Yiadi

N95- 16456

A Study of Software Standards Used in the Avionics Industry

Kelly J. Hayhurst
Assessment Technology Branch
Research Technology Group

Within the past decade, software has
become an increasingly common element in
computing systems. In particular, the role
of software used in the aerospace industry,
especially in life- or safety-critical
applications, is rapidly expanding. This
intensifies the need to use effective
techniques for achieving and verifying the
reliability of avionics software. Although
certain software development processes and
techniques are mandated by government
regulating agencies such as the Federal
Aviation Administration (FAA) and the
Department of Defense, no one methodology
has been shown to consistently produce
reliable software. The knowledge base for
designing reliable software simply has not
recached the maturity of its hardware
counterpart.

To date, existing software development
methods and standards have been accepted
largely based on intuitive arguments or
anecdotal evidence. The data typically
collected from a software development
process include a description and some
classification of faults identified during the
prescribed development and verification
activities and the final software product.
From a statistical perspective, this
represents a single replicate of development
information. From this single replicate,
some insight could be gained into the
feasibility and impact of the software
development method on that particular
implementation of software. However, the
single replicate does not provide enough
information to make statistical inferences
with confidence about the effectiveness of
the development method in general and it
provides little information about the
operational behavior of the software. To
provide the empirical data necessary to
scientifically evaluate and improve software
processes and product reliability, controlled
experimentation that accounts for the
performance of software during operation is
needed.

In an effort to increase our
understanding of software, Langley
Research Center has conducted a series of

85

-

experiments over the past 15 years with the
goal of understanding why and how
software fails. With an increased
understanding of the failure behavior of
software, improved methods for producing
reliable software and assessing reliability
can be developed. As part of this program,
the effectiveness of current industry
standards for the development of avionics
software is being investigated. This study
involves the generation of a controlled
environment to conduct scientific
experiments on software processes.

The Guidance and Control Software
(GCS) project involves the establishment of
an experimentation test-bed to monitor and
study the application of software
development methods and collect data that
can be used to make statistical inferences
about the effectiveness of those methods.
This test-bed allows the development and
simulated opérational testing of multiple
implementations of a guidance and control
application that was adapted from the
terminal descent phase of the Viking
lander. The test-bed is comprised of
software requirements for the guidance
and control application, a configuration
Inanagement and data collection system,
and a software simulator to run the control
software in a simulated operational
environment. The simulator is designed to
allow one or more implementations of the
GCS to run in a multitasking environment
and to collect data on the comparison of the
results from multiple implementations.

This test-bed provides a capability for
empirically investigating the effectiveness of
software development methods along with
investigating the reliability of the resultant
software. Currently, the GCS test-bed is
being used to investigate development and
verification techniques that comply with the
Requirements and Technical Concepts for
Aviation RTCA/DO-178B guidelines,
"Software Considerations in Airborne
Systems and Equipment Certification." The
DO-178B guidelines are used by every
commercial civil transport airframer and
equipment vendor since compliance with

).

these guidelines is required by the FAA for
developing software to be used in systems
or equipment certified for use in
commercial aircraft. ,

The purpose of the DO-178B document
is to provide guidelines for the production of
software for airborne systems that performs
its intended function with a level of
confidence in safety that complies with
airworthiness requirements. It is hoped
that following the guidelines in DO-178B
will ensure the production of reliable
software that is documented, traceable,
testable, and maintainable. The guidelines,
however, do not stipulate specific reliability
requirements for the software product since
currently available reliability estimation
techniques do not provide results in which
confidence can be placed to the level
required for certification purposes.

The DO-178B guidelines decompose the
software life cycle into three major
processes: a software planning process,
software development processes, and
integral processes. The software planning
process defines and coordinates all of the
project activities. The software development
processes are those processes that actually
produce the software product. These
include the requirements, design, code, and
integration processes. And finally, the
integral processes ensure the correctness,
control, and confidence of the software life
cycle processes and their outputs. The
integral processes consist of the
verification, configuration management,
quality assurance, and certification liaison
processes.

To study the effectiveness of the DO-
178B guidelines on the quality of the
software, a simple case study in which two
GCS implementations are being developed
is being conducted. Two teams consisting
of a programmer and a verification analyst
have each been tasked to develop an
implementation of the GCS following the
DO-178B guidelines within the GCS test-
bed. An extensive problem reporting
system captures relevant software error
information throughout the DO-178B
development process. This data includes:
a description of the software errors found;
the activity when the error was detected,
such as design review, unit testing, or
Integration testing; and, action taken with
respect to the error. This data will allow us
to not only look at the number of fauits
detected but, more importantly, the class of

86

. faults found at different development stages

and the relationship among the classes of
faults found by the different verification
techniques. This information coupled with
the effort data for all development and
verification activities could provide some
insight into the effectiveness of the various
development and verification methods.

After the two implementations have
completed the DO-178B development
process, the final software products will
undergo testing in - the simulated
operational environment to help identify
any remaining faults. These results could
provide further insight into the effectiveness
of the development methods and ‘the
reliability of the final software products,

Due to the extent of the data collection
and configuration management procedures
used in the test-bed, any phase in the life
cycle of the GCS implementations can be
reproduced. This gives a researcher the
capability to go back to any one of the
stages of the development process, apply a
different development or verification
technique to the software, and compare the
resulting software to any previously
developed implementation. Hence, the GCS
development and verification environment
can serve as a test-bed for the analysis of
various software development and
verification processes. :

Many lessons have been learned about
conducting software experiments during the
course of this study of the DO-178B
guidelines. A primary lesson is that a
simple case study is not an adequate
experiment design to evaluate an entire
software development process. Conducting
a more statistically rigorous software
experiment, however, would require
significant resources in terms of time and
man-power. Development of the GCS test-
bed, though, is a step toward conducting
the experimentation necessary to provide
the empirical data we need to scientifically
evaluate and improve software processes
and product quality.

The presentation provides further detail
about the study of the DO-178B guidelines
and the effort to conduct valid software
experiments.

A Study of Software Standards
Used in the Avionics Industry

Kelly J. Hayhurst
Assessment Technology Branch
Research and Technology Group

The Role of Computers in LaRC R&D Workshop
June 15, 1994

Outline

® Background
® Software Standards
® Guidance and Control Software Project

® Summary

87

Background

® Software is used in a wide variety of applications:

* video games, answering machines, anti-lock brakes on
cars, automatic teller machines, ..

® Software has many benefits compared to its
hardware counterpart:

* allows for more complex logic
* provides increased flexibility
* easier to modify

® Use of software is increasing in life- and safety-
critical applications

* avionics, Airbus 320
* control of nuclear power plants

Software Engineeri'ng

® Software is a logical rather than a physical system
element

* Software is developed or “engineered” -- not manufactured

The establishment and use of sound engineering

principles to economically obtain reliable
software that works efficiently on real machines

® Engineering: the application of a systematic
approach based on science and mathematics

toward the production of a product, process, or
system

’

88

Reliable Softwaré

® Achieving reliable software is a global problem
* Nno one knows how to generate perfect software

® Many proposed software reliability models (since
'64)
* Inadequate for estimation about life-critical software

— most consider reliability growth based on fauits found in
development, as opposed to operational reliability

* Often based on simplistic (unverified) assumptions
— constant failure rates
— stochastic independence

¢ Little existing data available to validate models

Software Dilemmé

> Software can significantly expand
system capability

?

= Since we don’t know how to build
perfect software -- Risk

1 ¢

How do we deal with these risks?

89

Software Standards

® There are a number of software guidelines/standards
used in industry

* DO-178B, used by the Federal Aviation Administration (FAA)
* DoD-2167A, used by the Department of Defense
* 1SO 9000

® Provide the guidelines for the production of software
that :
* performs its intended function

~ with some level of confidence that complies with the given
requirements

Software Standards

® Many software development techniques, models and
standards exist and are in use

* most have been accepted largely based on logical arguments
or anecdotal evidence

"...we need to codify standard practices for software
engineering -- just as soon as we discover what they
should be. Regulations uninformed by evidence,
however, can make matters worse."”

-- from Digital Woes (Why We Should not Depend on Software),
by Lauren Ruth Wiener

90

~ Focus

We need to become “...informed by evidence”

® Conduct scientific experiments to understand:
* software failure

— need to examine operational behavior of software
* the effect of different software development techniques

~ relate that understanding to process models and standards

Conduct EAxperiments!!
Collect Empirical Evidence!!

Software Experiments in ATB

4 GOAL)

Establish a controlled environment to conduct
scientific experiments to address:
* the reliability of software and

C the effectiveness of software development methodﬂ

® Guidance and Control Software (GCS) Project

* study of the RTCA/DO-178B guidelines (Software

Considerations in Airborne Systems and Equipment
Certification)

. “sponséred”’by the FAA

91

RTCA/DO-178B Guidelines

® FAA requires compliance with DO-1 78B'f0r software
developed for embedded commercial aircraft ;
equipment e o

* software designers must take a disciplined approach to
software development

® Gives general guidelines for software development
and verification according to “software levels” --
A-E , W3 \

* A: anomalous behavior causes catastrophic failure
condition

* E: anomalous behavior has no effect on operational
capacity

~ Software Life Cycle Prdc‘esses

® Planning Process: defines and coordinates the
software development activities

® Development Processes:

* Software Requirements Process
* Software Design Process

* Software Coding Process

* Integration Process

® Integral Processes: ensure correctness, control and
confidence

* Software Verification Process]

* Software Cohfiguration Management Process
* Software Quality Assurance Process

* Certification Liaison Process

92

-]

Development & Verification Flow

Code Integrate
Software Modules

Development | Develop :
Activities [~ Software
Rgmts.

Artifacts
Produced

Design
Review

Verification Software
Activities an]ts.
Review

Integration
Test

L

DO-178B Life Cycle Data

Life Cycle Process | Life Cycle Data

Planning Plan for Aspects of Certification
- Development Standards
Accomplishment Summary

Development Requirements Data
Design Description
Source Code
Executable Object Code

Integral Verification Plan

Verification Procedures & Cases

Verification Results

Configuration Management Plan

Configuration Management Records
Development Environment Configuration Index
Configuration Index

Quality Assurance Plan

Quality Assurance Records

Problem Reports

93

CASE Tools

® CASE tools can be used in the development of
airborne software

* Any tool used must be qualified

® Qualification is done by type:
* Software Development Tools: whose output is part of the
airborne software
— eX. source code generator

* Software Verification Tools: tools that cannot introduce
errors -- but may fail to detect them

— ex. analysis of complexity tool

CASE Tools Qualification

® For Software Development Tools:

* show that the development process used for the tool is
equivalent to that used for the airborne software

® For Software Verification Tools:

* show that the tool complies with its operational
requirements under normal operating conditions

94

Study of DO-178B Guidelines

® Work with the FAA to evaluate methods that comply
with the DO-178B guidelines

* Base study on earlier work done at the Research Triangle
Institute to study the DO-178A guidelines

® Experiment Design: One Shot Case Study
X O

[> Apply DO-178B and see what you get

Guidance and Control Software
Project

® Develop software according to DO-178B
* use a guidance and control application
* complete the life cycle starting from software requirements
through integration
® Provide a controlled environment

* extensive documentation and configuration control
* extensive data collection

— failure data

— effort and cost data

® Simulate' operation of the software to:
* determine remaining faults
* determine reliability

95

96

-

umoQg ysnoj —

Wby doug ——»

(suibag 1usasaq jeuwis 1)
pasesjay siny) — »

s

dn-wep uibeg saulbug —

juassaQq a;nqomed —_—

Kiojosfes] jusasaq jeuluia |

Sle|y o} uoissiw Jspue Bujip 9261

9y} jo ssadons jo Aljigeqouid ay;

Apnis o} pasn weiboud uollejnuwis
B UO paseq aJe sjuswaiinbay

(92inep Buialdoel D O Jusdsep sy pup spIyer
SU} inogp uoypuLIojul A10Sues B}PIIUNWWOY (Z)

80DJNs s jaupid oy} o} Jusosep

[joulwia) Buunp apoiIyea Buipup| Apjeupid
D JO J0ju0D suibus pub 8suppINb 8pIAOId (1)

L __@soding
uoneayddy sop ayy

Software Composition

The guidance and control software is composed of:

11 Functional Units which are divided into:

3 Subframes:
Sensor Processing
Guidance Processing
Control Law Processing
1 Frame = 1 iteratvion of the 3 subframes

1 Trajectory = ~ 2000 frames

GCS Development Processes

® Producing 2 GCS implementations
* each implementation has a designated programmer
& verification analyst

® Each develbpment team uses the same
software high-level requirements document

® Designs generated using teamwork

* conduct design review using formal inspection
procedures

® Implementations coded in FORTRAN
* projected size: 1500 - 2000 lines of code

* conduct code review using formal inspection
procedures

97

- Integration Process

® Code is integrated at 4 levels: functional units
subframes
frames
trajectory

® Testing conducted at all 4 levels to:
* demonstrate that the software satisfies its requirements

* demonstrate (with high confidence) that errors which could
lead to unacceptable failure conditions have been removed

® 100% covérage for requirements-based tests

® 100% modified condition/decision coverage

Development Products

Software

Requirements
L

Design

Design Review
Y
Co*de
Code Review

Y
Unit Test

Subframe Test

Frameé Test

\
Trajectory Test

More Products

Software

Requirements

Y

Design | ——=IDesign milestone 0 —’
Design Review »Design milestone 1
- Y \ | L
Code Design milestone 2—={Code milestone 0

Code Review ~—IDesign milestone 3|—»|Code milestone 1

Y

Unit Test *—Design milestone 4|-=|Code milestone 2

Frame Test *—Design milestone 6

=
et

Subframe Test ==pesign mllesi.tonﬁe_s 3 C@Jdei milestone 3
—Code milestone 4
-a

Trajectory Test Design milestone 7 Code milestone 5

Software Product‘s

® Each software product (requirements, design, code,
test cases, documentation) is placed under
configuration control starting with the initial version

* the Code Management System (CMS) by Digital Equipment
Corp. is being used

® Each subsequent change to a software product is
controlled and captured by the configuration
management system

® All versipns of any software produet are preserved
and can be reproduced

99

Experiment Basics

® Independently generate “n” implementations of the
GCS

* each following the development methodology defined in
DO-178B

® Collect effort/cost data for all development and
verification activities for each implementation

® Collect data on all faults identified in the software
products throughout the development and
verification processes

® Collect data on all faults identified in simulated
operation

GCS Simulator

® Provides inputs (about environment & lander) for
sensor processing

® Performs response modeling for the gUidance and
control

® Receives data @

Sensor Inputs
L
- esparise
Sensor Processing odeling
send data record
Guidance Processing data
* send data
record
Control Law Processing| data
i ‘ * send data recor

data

GCS Implementation |

100

GCS Simulator |

® Serves as a testbed for back-to-back testing of
multiple GCS implementations (up to 28)

® For back-to-back testing, one implementation is
designated as the “driver” implementation

® The results of all implementations are checked at
the end of each subframe

* for limit errors, comparing each variable against its
predetermined valid range

* for accuracy errors, comparing results of each
implementation with results of the driver implementation

® All miscomparisons are recorded and investigated
to determine the source of the problem

Operational Failure Characterization

GCs

implementatiop1 Driv
Examine
Discrepancies Software
GCS — i
Implementatipp2 Failure Data
Faults
found in
Imp. 1
GCS]
Implementatibp'n
GCS Simulator

® Use the software failure data to

* estimate reliability of final version of each implementation
* determine effectiveness of the development methodology

]

101

Understanding the Failure Data

| Questions of Interest

Faults -- How many faults in the set?
found in _ '
lmplemr?ntatlon -- What types of faults?

-- Are there any critical faults?

-- Are there classes of faults found
during random testing that are
different than those found during
DO-178B development cycle?

Studying Effectiveness

GCS Simulator GCS Simulator
/_Code /
Reviewed Final
Versions Versions
-

Software Failure
Data

Are these fault sets equivalent?

-- Is the integration process more effective (or efficient)
compared to other fault detection methods?

102

GCS Project Status

® The following project artifacts have been developed:
* Requirements for the guidance and control application
* Configuration management system
* GCS simulator
* Data collection system
* Project documentation

® 2 implementations are in theDesign phase of
development

® Plan to complete development by end of December
‘94

Lessons Learned

® Be prepared to document - and document -- and
document

® Allow sufficient time up front for planning -- and
documentation of those plans

® Tools can be helpful
* can help you organize and track items more efficiently

® Tools can be hurtful
* it takes time ($$) to learn all about new tools and how to use
them
- alloyv for §uch time while planning

* everyone involved with the output of a development tool
needs to understand that tool

103

More Lessons

® Complying with the DO-1 788 guidelines is not
cheap

* developing critical software is time, man-power, and
documentation intensive

® Collecting data -- software failure data and cost/
effort data -- is difficuit

* software problems are often complex
* changes can impact many project artifacts
* reluctance to accurately account for development effort

Summary

(Gathering empirical evidence is difficﬂ

-- But IMPORTANT!H!

® GCS project provides a controlled environment to
observe and collect empirical data on software
development methods

* Realistic guidance and control application
* Applying industry-standard guidelines and practices

® Provide data to increase understanding of software

development processes and the quality of their
products

* improve software processes & product quality
* improve reliability estimation methods

* provide input for improving software standards

104

Project Plans

® Make the GCS testbed available to other researchers

® Improve the experiment design to allow more
statistical analysis

/ GCS Package

Software Requirements

Intermediate & Final Development Produdts

Verification Products (Checklists, test cases etc.)
Simulator

Documentation

105

